语音识别系统可分为哪几类(语音识别系统的分类)
1、根据识别的对象不同,语音识别任务大体可分为3类,即孤立词识别(isolated word recognition),关键词识别(或称关键词检出,keyword spotting)和连续语音识别。
2、解析:语音识别的基本过程 根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。
3、根据语音识别实际应用中的不同,语音识别系统可以分为:特定人与非特定人的语音识别、独立词与连续词的语音识别、小词汇量与大词汇量以及无限词汇量的语音识别。但无论哪种语音识别系统,其基本原理和处理方法大体相同。
4、多为中、小词汇量的语音识别系统,即只能够识别10~100词条。只有近一两年来,才有连续数码或连续字母语音识别专用芯片实现。
5、语音识别系统的分类 语音识别系统可以根据对输入语音的限制加以分类。
6、一个完整的基于统计的语音识别系统可大致分为三部分:(1)语音信号预处理与特征提取;(2)声学模型与模式匹配;(3)语言模型与语言处理、语音信号预处理与特征提取选择识别单元是语音识别研究的第一步。
语音识别技术的基本方法
语音识别的过程和方法具体如下:语音识别过程 语音信号采集 语音信号采集是语音信号处理的前提。语音通常通过话筒输入计算机。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高技。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。
语音识别技术是一种将语音转换为文本的技术。它通常包括两个主要步骤:语音预处理和语音识别。语音预处理步骤包括语音信号的采集、降噪、分帧、特征提取等操作。
语音识别技术常用的方法有如下四种:基于语言学和 声学的方法。随机模型法。利用人工神经网络的方法。概率语法分析。其中最主流的方法是随机模型法。
语音识别的分类应用
1、语音质检 语音质检普遍被应用在智能外呼和客服领域。
2、声纹识别:固定的人声,其他人不可以,这种功能目前比较少人做;非人声识别:只要指令对,所有人都可以控制,常用的就是这种。
3、语音识别引擎识别出语义,把结果(json数据)给到APP,APP把结构化的语义进行分类处理。再比如,如果想查询天气,语音说“明天天气如何”。识别引擎会根据位置信息,联网检索相关天气信息提供给APP。
4、分类: 电脑/网络 硬件 解析:语音识别的基本过程 根据实际中的应用不同,语音识别系统可以分为:特定人与非特定人的识别、独立词与连续词的识别、小词汇量与大词汇量以及无限词汇量的识别。
5、第二是“识别”或“测试”阶段,按照一定的准则求取待测语音特征参数和语音信息与模式库中相应模板之间的失真测度,最匹配的就是识别结果。
6、语音识别可按不同的识别内容进行分类:有音素识别、音节识别、词或词组识别;也可以按词汇量分类:有小词汇量(50个词以下)、中词量(50~500个词)、大词量(500个词以上)及超大词量(几十至几万个词)。
语音识别技术原理是什么
语音识别技术,目标是将人类的语音中的词汇内容转换为计算机可读的输入。
语音识别是一种计算机技术,它可以将人类语音转换为文本。它通过捕捉人类语音并将其转换为数字信号来实现这一目的。语音识别系统通常使用一组特定的算法来分析和识别语音信号。
语音识别技术原理及应用语音识别技术是一种计算机技术,它可以将人类说出的话语转换成文字或数字。它是一种自然语言处理技术,可以将语音信号转换成文本,从而实现人机交互。
语音识别的过程是什么?语音识别的方法有哪几种?
一般来说,语音识别的方法有三种:基于声道模型和语音知识的方法、模板匹配的方法以及利用人工神经网络的方法。
语音识别过程主要包括语音信号的预处理、特征提取、模式匹配几个部分。预处理包括预滤波、采样和量化、加窗、端点检测、预加重等过程。语音信号识别最重要的一环就是特征参数提取。
语音识别技术,又称语音识别,是将语音信号转换成文本的过程。它通过对语音的频谱和时间特征进行分析和识别来实现这一目的。语音识别系统通常由以下几部分组成:语音捕捉器、特征提取器、语言模型和识别器。
语音识别一般要经过以下几个步骤:①语音预处理,包括对语音的幅度标称化、频响校正、分帧、加窗和始末端点检测等内容。
麦克风接收语音信号。语音信号放大。语音信号AD转换。语音信号关键数据提取。对比语音数据库寻找匹配。生成文字显示。
还没有评论,来说两句吧...