浅谈NLP-语法树和语言模型
在自然语言中,我们的目标是对句子理解,对句子生成。但是由于计算机对电脑理解有一些障碍:模糊、不确定、不完整等。 我们在这里简单介绍语法树Syntax Tree和语言模型。
N-gram模型是一种典型的统计语言模型(Language Model,LM),统计语言模型是一个基于概率的判别模型.统计语言模型把语言(词的序列)看作一个随机事件,并赋予相应的概率来描述其属于某种语言集合的可能性。
Transformer是近两三年非常火的一种适用于NLP领域的一种模型,本质上是Encoder-Decoder结构,所以多应用在机器翻译(输入一个句子输出一个句子)、语音识别(输入语音输出文字)、问答系统等领域。
PCFG只是一种特殊的上下文无关文法模型,根据PCFG的模型和句子,具体去对句子做语法分析,生成语法结构树,靠的是还是CYK算法。CYK算法是一个用来判定任意给定的字符串W是否属于一个上下文无关文法的算法。
Attention:最早用于Seq2Seq模型。例如要将“我爱你”翻译为“I love you”时,首先根据encoder获得对原文每个词的理解,即encoder_output。
NLP基础知识和综述
1、CRF 具有很强的推理能力,并且能够使用复杂、有重叠性和非独立的特征进行训练和推理,能够充分地利用上下文信息作为特征,还可以任意地添加其他外部特征,使得模型能够 获取的信息非常丰富。
2、NLP首创于1970年代早期。是由两位美国人——理察·班德勒(RichardBandler)和约翰·葛瑞德(JohnGrinder)完成的基础理论。有25%-40%的错误属于real-worderror这一部分是languagemodel与noisychannelmodel的结合。
3、n-gram 是一个重要的基础概念, 它所提供的概率分析可以做到很多事情, 例如机器翻译“请给我打电话”:P(“please call me”) P(please call I )。
4、统计概率的计算方法如下: 首先对错误统计的方式:显然,用户想输入across的概率最大,这样候选词列表就有了排序和过滤的依据(大概率的排在前面,概率过低的可以不显示)。
5、NLP首创于1970年代早期。是由两位美国人——理察·班德勒(Richard Bandler)和约翰·葛瑞德(John Grinder)完成的基础理论。
6、NLP 由两个主要的技术领域构成:自然语言理解和自然语言生成。 自然语言理解方向,主要目标是帮助机器更好理解人的语言,包括基础的词法、句法等语义理解,以及需求、篇章、情感层面的高层理解。
自然语言处理几个概念
自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,主要研究如何让计算机理解、处理和生成人类自然语言的技术。
简单来说,语言模型就是一个对于不同单词出现概率的统计。 然而,对于英语来说,每个单词可能有不同的时态和单复数等形态变化。因此,在做统计前,需要先对原始数据进行预处理和归一化。
自然语言处理是一门融语言学、计算机科学、数学于一体的学科。NLP 由两个主要的技术领域构成:自然语言理解和自然语言生成。
快速了解什么是自然语言处理
自然语言处理(简称NLP),是研究计算机处理人类语言的一门技术。
简单地说,自然语言处理(NaturalLanguage Processing,简称NLP)就是用计算机来处理、理解以及运用人类语言(如中文、英文等),它属于人工智能的一个分支,是计算机科学与语言学的交叉学科,又常被称为计算语言学。
自然语言处理是指利用人类交流所使用的自然语言与机器进行交互通讯的技术。自然语言处理(Natural Language Processing,简称 NLP)是计算机科学、人工智能和语言学的交叉学科,旨在让计算机能理解和生成人类语言。
情感和情绪分析的定义:情感和情绪分析是自然语言处理领域中的重要分支,旨在识别和理解文本中表达的情感和情绪状态。它有助于了解用户对产品、服务、事件或社交媒体内容等的情感倾向,从而指导决策和改进。
自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。人类通过语言来交流,狗通过汪汪叫来交流。机器也有自己的交流方式,那就是数字信息。
NLP第九篇-句法分析
1、浅层句法分析将句法分析分解为两个主要子任务,一个是语块的识别和分析,另一个是语块之间的依附关系分析。其中,语块的识别和分析是主要任务。
2、NLP中这几个名词可以简单理解为,文法=语法=词法+句法。就是说文法就是语法,包含了词法和句法。
3、句法分析的目的是解析句子中各个成分的依赖关系。所以,往往最终生成的结果是一棵 句法分析树。句法分析可以解决传统词袋模型不考虑上下文的问题。
4、information retrieval system指的就搜索引擎。首先,基于文本相关性来搜索,在NLP场景下,核心关键词的得分容易被一些废话稀释。虽然可以用stopwords来解决,但句法分析提取本体的做法会精准得多。
还没有评论,来说两句吧...