程序员如何轻松实现数据可视化?
可视化BI类:比如cognos、tableau等,更直接地针对业务分析。以上,前两者是纯粹的可视化图标,后两者涵盖从数据采集、分析、管理、挖掘、可视化在内的一系列复杂数据处理。
通过可视化产品(系统)结构学习,我们不难看出,实现数据可视化的操作过程包括:数据连接(存储)、制作数据模型(计算)、制作图表(展示)。
数据可视化技术综合运用计算机图形学、图像、人机交互等,将采集、清洗、转换、处理过的符合标准和规范的数据映射为可识别的图形、图像、动画甚至视频,并允许用户与数据可视化进行交互和分析。
可以借助数据可视化分析软件呀。如果数据太多,不好好的做数据可视化分析根本无法判断好坏;没有达到数据可视化的话,很多问题容易被隐藏。
用数据可视化工具(OurwayBI)可以实现,都说文不如表,表不如图,做数据可视化报表不仅要分析挖掘深入,更要展现直观,让管理者迅速掌握数据背后的复杂关系、规律,从而制定针对性的、高灵活度的销售策略。
大数据可视化展现方式有哪些?
做成图表样式(用折线图、柱形图、面积图等等)根究你想要的展示的维度选择不同的图表来展示。可以做成一个综合性的数据可视化看板,在看板中将数据从多维度展示,也就是第一种的综合美观版。
散点图 散点图非常适合展示两个变量之间的关系,因为你可以直接看到数据的原始分布。如下面一张图所示的,你还可以通过对组进行简单地颜色编码来查看不同组数据的关系。
主要就是数据可视化图表吧,各种各样的图表,如柱状图、条形图、折线图、饼图这些常见的图表,还有数据地图、词云、漏斗图、桑基图等好看、酷炫的图表。
可以实现数据可视化的工具有:Excel、报表、BI 图表的展现形式有:柱状图、条形图、折线图、饼图、雷达图、地图、漏斗图、仪表板图、散点图、桑基图、词云和矩形树图等各种各种图形。
分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。网络 在网络中展示数据间的关系,它是一种常见的展示大数据量的方法,结构较为复杂。
如何实现大数据可视化?
1、另一种就是开源的可视化工具,一般可以免费使用全部功能,也能制作复杂的数据可视化报表,但是通常需要编写代码来制作可视化图表,对使用者的IT技术要求比较高。
2、第一步:分析原始数据 数据是可视化背后的主角,逆向可视化与从零构建可视化的第一步一样:从原始数据入手。不同的是在逆向时我们看到的是数据经过图形映射、加工、修饰后的最终结果,而原始数据隐藏在纷繁复杂的视觉效果中。
3、借助Echarts、HighCharts、Djs等开源的可视化插件,嵌入代码,开发成插件包。数据可视化,是关于数据视觉表现形式的科学技术研究。
4、应确保数据类型和分析目标可反映所选的可视化类型。Mihailovski称:“人们通常会采用相反的方法,他们先看到整洁或模糊的可视化类型,然后试图使其数据相匹配。”对于大数据项目的可视化,简单的表格或条形图有时可能是最有效的。
5、通过可视化产品(系统)结构学习,我们不难看出,实现数据可视化的操作过程包括:数据连接(存储)、制作数据模型(计算)、制作图表(展示)。
6、面积&尺寸可视化 对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同目标对应的目标值之间的比照。这种办法会让阅读者对数据及其之间的比照一目了然。
数据可视化6步法
1、将时间和空间可视化时间 通过时间的维度来查看指标值的变化情况,一般通过增加时间轴的形式,也就是常见的趋势图。空间 当图表存在地域信息并且需要突出表现的时候,可用地图将空间可视化,地图作为主背景呈现所有信息点。
2、打开excel开始构造一些数据,从下图中可以看出最后一列数据看起来没有感觉,接下来教大家来将最后一列数据可视化,如下图。首先在最后一列的最下面添加一个数据100%,这个数据作为参考值,如下图。
3、设置标题。点击“Header”,输入标题,并设置大小、颜色等属性。1设置页脚。点击“Footer”,输入数据来源,并设置位置、大小等属性。1以上是最基础的参数,设置完这些,一个基础的数据可视化视频就完成了。
4、选中数据,按下Ctrl+T创建超级表。点击表设计,插入切片器并选择课程名称。选择数据,插入带平滑线和数据标记的散点图并设置。
5、面积&尺寸可视化 对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。这种方法会让浏览者对数据及其之间的对比一目了然。
6、灵活使用智能功能,避免页面过于拥挤 想要将报做得更详细,因此在同一张报表上挤进去各种可视化图表。但事实上,有些可视化图表是可以放在别的地方,这样就能节省很多空间,让数据可视化分析报表页面看上去更简洁。
如何将数据进行数据可视化展现
在数据可视化设计前,分析人员要先完成业务需求的分析,将分析需求拆分成不同层级、不同主题的任务,捕捉其中业务的数据指标、标签,划分出不同优先级,为下一步取数做准备。
打开Excel软件,会自动新建一空白Excel文档。如图。输入举例用的数据,多行不同的数据。如图。复制数据到要用数据条显示的单元格。此处为原数据的右侧单元格。如图。
散点图 散点图非常适合展示两个变量之间的关系,因为你可以直接看到数据的原始分布。如下面一张图所示的,你还可以通过对组进行简单地颜色编码来查看不同组数据的关系。
还没有评论,来说两句吧...