自然语言处理技术有哪些
1、自然语言处理技术有标记化、删除停止词、提取主干、单词嵌入、词频-逆文档频率、主题建模、情感分析。标记化(Tokenization)标记化指的是将文本切分为句子或单词,在此过程中,我们也会丢弃标点符号及多余的符号。
2、文本分类与情感分析:自然语言处理技术可以对文本进行分类,如新闻文章分类、垃圾邮件过滤等。此外,情感分析能够识别和理解文本中的情感倾向,从而帮助企业了解用户对产品和服务的态度和情感。
3、自然语言处理技术的应用介绍如下:机器翻译 每个人都知道什么是翻译:将信息从一种语言翻译成另一种语言。当机器完成相同的操作时,要处理的是如何“机器”翻译。
4、因而它是计算机科学的一部分。自然语言处理主要应用于机器翻译、舆情监测、自动摘要、观点提取、文本分类、问题回答、文本语义对比、语音识别、中文OCR等方面。那么,让我们从自然语言处理的第一个应用开始。
simCSE:论文解读
无论是否有额外的NLI监督,SimCSE都能显著改善所有数据集的结果,大大优于之前最先进的模型。具体而言,我们的无监督SimCSE-BERT-base将之前的SOTA平均Spearman相关性从705%提高到725%,甚至与有监督baselines相当。
后续有时间的话,将常见的,看过的论 *** 个总结,不然容易忘记。
特征提取,模式匹配,语音识别,类比推理,有何联系?
特征提取模式匹配语音识别类比:语音识别的第一步就是语音特征提取。
人工智能导引、数据结构与算法分析、程序设计基础、人工智能程序设计、机器学习导论、知识表示与处理、模式识别与计算机视觉、自然语言处理、数字系统设计基础、操作系统。人工智能(Artificial_Intelligence),英文缩写为AI。
机器学习:机器学习是从数据中自动发现模式,模式一旦被发现便可以做预测,处理的数据越多,预测也会越准确。自然语言处理:对自然语言文本的处理是指计算机拥有的与人类类似的对文本进行处理的能力。
词义相似度计算
1、其中lin_similarity、wup_similarity和path_similarity结果范围在[0,1]之间,而由我们的数据可知,数据结果应该在[0,5]之间,因此这里我们把结果×5进行处理。
2、基于语义和词序的句子相似度计算方法简介 定义1:给定一个句子Ti,经过汉语分词系统分词后,得到的所有词W1构成的向量称为句子Ti的向量表示,表示为Ti = {w1,w2,...wn}。
3、基于统计的词语语义相似度计算方法是一种经验主义方法,它把词语相似度的研究建立在可观察的语言事实上。它是建立在两个词语语义相似当且仅当它们处于相似的上下文环境中的这一假设的基础上。
还没有评论,来说两句吧...