NLP基础知识和综述
CRF 具有很强的推理能力,并且能够使用复杂、有重叠性和非独立的特征进行训练和推理,能够充分地利用上下文信息作为特征,还可以任意地添加其他外部特征,使得模型能够 获取的信息非常丰富。
NLP首创于1970年代早期。是由两位美国人——理察·班德勒(RichardBandler)和约翰·葛瑞德(JohnGrinder)完成的基础理论。有25%-40%的错误属于real-worderror这一部分是languagemodel与noisychannelmodel的结合。
n-gram 是一个重要的基础概念, 它所提供的概率分析可以做到很多事情, 例如机器翻译“请给我打电话”:P(“please call me”) P(please call I )。
统计概率的计算方法如下: 首先对错误统计的方式:显然,用户想输入across的概率最大,这样候选词列表就有了排序和过滤的依据(大概率的排在前面,概率过低的可以不显示)。
NLP首创于1970年代早期。是由两位美国人——理察·班德勒(Richard Bandler)和约翰·葛瑞德(John Grinder)完成的基础理论。
自然语言处理(NLP)的基础难点:分词算法
结合方法1:将待切分字串的每个汉字用 替代, 以 作为基元,利用语言模型选取全局最优(生成式模型)。
自然语言处理(NLP)是计算机科学,信息工程和人工智能的子领域,涉及计算机与人类(自然)语言之间的交互,特别是如何对计算机进行编程以处理和分析大量自然语言数据。
一般在搜索引擎中,构建索引时和查询时会使用不同的分词算法。常用的方案是,在索引的时候使用细粒度的分词以保证召回,在查询的时候使用粗粒度的分词以保证精度。
词义的消歧许多字词不单只有一个意思,因而我们必须选出使句意最为通顺的解释。
在自然语言中词与词之间通常是连贯的,而正确划分、界定不同的词语实体是正确理解语言的基础 。这个问题对于汉语尤其突出。界定字词边界通常使用的办法是取用能让给定的上下文最为通顺且在方法上无误的一种最佳组合。
NLP理解自然语言目前有两种处理方式: 基于规则来理解自然语言,即通过制定一些系列的规则来设计一个程序,然后通过这个程序来解决自然语言问题。
自然语言处理几个概念
1、自然语言处理(Natural Language Processing,简称NLP)是人工智能领域的一个重要分支,主要研究如何让计算机理解、处理和生成人类自然语言的技术。
2、简单来说,语言模型就是一个对于不同单词出现概率的统计。 然而,对于英语来说,每个单词可能有不同的时态和单复数等形态变化。因此,在做统计前,需要先对原始数据进行预处理和归一化。
3、自然语言处理是一门融语言学、计算机科学、数学于一体的学科。NLP 由两个主要的技术领域构成:自然语言理解和自然语言生成。
4、自然语言处理(NLP)就是在机器语言和人类语言之间沟通的桥梁,以实现人机交流的目的。
5、摘要:自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学等于一体的科学。
6、自然语言处理(英语:naturallanguageprocessing,缩写作NLP)是人工智能和语言学领域的分支学科。此领域探讨如何处理及运用自然语言;自然语言认知则是指让电脑“懂”人类的语言。自然语言生成系统把计算机数据转化为自然语言。
什么是自然语言处理的重要应用也可以说是最基础的应用
1、自然语言处理的重要应用如下:机器翻译。机器翻译(MachineTranslation)是指运用机器,通过特定的计算机程序将一种书写形式或声音形式的自然语言,翻译成另一种书写形式或声音形式的自然语言。
2、自然语言处理主要是关于统计学和逻辑学的技术。自然语言处理是指对人类语言进行计算机处理的学科领域。它涉及到很多技术和方法,其中最基础的就是统计学和逻辑学。统计学基础 自然语言处理中的许多技术都是基于统计学原理的。
3、自然语言处理(Natural Language Processing,简称NLP)是人工智能的一个子域。自然语言处理的应用包括机器翻译、情感分析、智能问答、信息提取、语言输入、舆论分析、知识图谱等方面,也是深度学习的一个分支。
4、属于人工智能的自然语言处理应用领域。自然语言处理主要应用于机器翻译、手写输入、自动摘要、观点提取、文本分类、问题回答、文本语义对比、语音识别、中文OCR等方面。
还没有评论,来说两句吧...